

Available online at www.sciencedirect.com

International Journal of Mass Spectrometry 253 (2006) 141-145

www.elsevier.com/locate/ijms

Short communication

ESI-MS fragmentation pathways of *N*-methylpyrrole polyamide/peptide conjugates

Yong Ye^{a,*}, Li-Feng Cao^a, Ming-Yu Niu^{a,b}, Xin-Cheng Liao^a, Yu-Fen Zhao^{a,b,*}

^a Department of Chemistry, Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, PR China ^b The Key Laboratory for Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education,

Department of Chemistry, Tsinghua University, Beijing 100084, PR China

Received 12 February 2006; accepted 12 February 2006 Available online 23 March 2006

Abstract

MS/MS fragmentation pathways of polyamide/peptide conjugates, which are synthetic analogues of natural products with DNA affinity are discussed. The main fragmentation pathways involve the cleavage of the C–CO between rings and carbonyl groups (*a* cleavage), CO–NH amide bonds (*b* cleavage).

© 2006 Published by Elsevier B.V.

Keywords: ESI/MS/MS; Poliamidic oligomer; DNA

1. Introduction

The natural product distamycin and netropsin are polyamide containing three *N*-methylpyrrole (Py) moieties. They have ability to binding to the minor groove of A/T rich sequences of double helical DNA [1–14]. A number of such compounds have been synthesized and their biological activity explored. Some of the compounds can bind DNA with great specificity [15–19]. We are synthesizing various polyamides and their peptide conjugates, then studying their interaction with DNA. In this paper, the fragmentation of a series of synthetic polyamide and their peptide conjugates was investigated using electrospray ionization mass spectrometry (ESI-MS) combined with tandem mass spectrometry (ESI-MS).

2. Experimental

The polyamide and its peptide conjugates were prepared according to published procedures [20]. Mass spectra were acquired in positive ion mode using a Bruker ESQUIRE-LCTM ion trap spectrometer equipped with a gas nebulizer probe, capable of analyzing ions up to m/z 6000. Nitrogen was used as drying gas at a flow rate of 4 L/min. The nebulizer pressure was

1387-3806/\$ - see front matter © 2006 Published by Elsevier B.V. doi:10.1016/j.ijms.2006.02.005

7 psi. The capillary was typically held at 4 kV and the source temperature was maintained at 300 °C. The instrument was operated at unit-mass resolution; calibration of m/z was performed using a standard ES-tuning-mix. The samples were continuously infused into the ESI chamber by a Cole-Parmer 74900 syringe pump (Cole Parmer Instrument Company, Vernon Hills, IL).

3. Results and discussion

We synthesized some polyamide/peptide conjugates. The polyamide is believed to specifically bind DNA and the dipeptide has been demonstrated to induce DNA cleavage. We also synthesized some polyamide/histidine conjugates in order to obtain polyamide/dipeptide conjugates then compared their activity. The MS/MS spectral data of the $[M+H]^+$ ions, and of the most significant fragment ions of the five compounds, are summarized in Tables 1 and 2. The main fragmentation are cleavages labeled as a, b and m (Scheme 1). The structure of compounds 1–5 is similar. They all have polyamide, 1,6-hexanediamine and His group. The most striking feature of the MS/MS spectra of the $[M + H]^+$ ions of them is the fragment ions Y₅, Y₆, Y₆, Y₅, X₁/Y₆, X₂/Y₆ at *m*/*z* 513, 650, 1056, 919, 853 and 524, all due to cleavage of the CO-NH bond. Other important features of the MS/MS spectra of compounds 1-5 are the fragment ions a_4 , a_3 , X_1/Y_5 , X_2/Y_6 , X_1 , X_2 , X_3 , all due to cleavage of CO–C bond (a cleavage).

^{*} Corresponding authors. Tel.: +86 371 67767050; fax: +86 371 67767051. *E-mail address:* yeyong03@tsinghua.org.cn (Y. Ye).

Table 1 MS^2 and MS^3 spectra data of the conjugates

No.	Chemical structures	Precursor	Fragment ions (rel, int)					
			Y ₆	Y ₅	a ₄	a ₃	b ₃	m
1	$O_2N \xrightarrow{HN_3} O$	750(71) 650(57) 513(92)	650(100)	513(3) 513(100)	371(36) 371(100)		275(6) 275(16)	
2	O_2N HN HN O HN HN NH NH O OCH_2Ph	827(79) 513(31) 371(66)		513(100)	371(18) 371(100)	249(17) 249(100)	275(4) 275(61)	684 (25)
3	O_2N HN HN O HN HN O HN H O HH HN H O HH HH HH HH HH HH	737(19) 513(100) 684(70) 371(55)	650(4)	513(100)	371(21) 371(49)	249(13) 249(93)	275(100)	684(9)
4	O (NH	1156(37) 1056(49)	1056(100)	919(100)				
5	O (NH	1144(78) 941(97) 919(100) 716(100) 611(41)		919(100)				

Table	2
ruore	-

MS² and MS³ spectra data of the conjugates (continue)

No.	Fragment ions (rel, int)											
	X1	X ₂	X3	X ₃ /m	X ₄ /m	X1/Y6	X1/Y5	X ₂ /Y ₆	X1/b3	X1/a2	X ₁ /a ₄	X ₂ /Y ₅
1 2												
3			489(6)	496(100)	914(4E)							
4				430(100)	314(43)	853(52)	716(16)	524(26)				
5	941(21)	611 (8)	489(7)			853(18)	716(15) 716(100)		478 (24)	330 (13)	574(28)	
							716(24)	524(21)			574(28)	387(28) 387(100)

Scheme 1. Main fragmentation modes.

Scheme 2. Fragmentation pathway of the compound 3.

Fig. 1. The MS and MS^n spectra of compound **3**.

The fragment ions Y_5 at m/z 513 in the MS/MS spectra of the $[M + H]^+$ ions of compounds **1–3** are due to expulsion of His group (Scheme 1); the ions a_4 at m/z 371 correspond to cleavage of the C–CO bond between the ring and carbonyl group and the ions b_3 at m/z 275 correspond to cleavage of the CO–NH bond between the two rings.

In order to better understand the fragmentation mechanisms of these polyamides/peptide conjugate, the MS/MS/MS spectra of compound **3** was recorded. Fragmentation pathway is shown in Scheme 2. The decomposition of $[M + H-224]^+$ yields ions at m/z 513 by an a path cleavage of CO–NH amide bonds between the NH groups of 1,6-hexanediamine and His group. The formation of the ions at m/z 249 and m/z 371 occurs by the *a* path cleavage between the ring and carbonyl group with rearrangement of one hydrogen atom, while the ions observed at m/z 314 and m/z 436 result from an *m* path cleavage (Scheme 2). The CO–NH amide bond of His–Ser dipeptide cleavages produce the ions at m/z 650 (Fig. 1).

Fig. 2. The MS and MS^n spectra of compound 5.

Although the polyamide/peptide conjugates 2 and 3 are structurally similar to each other, they have different fragmentation pathways. The precursor ion m/z 737 of compound 3 produced fragment ions m/z 650 by the *b* cleavage. However, the *b* cleavage product m/z 650 was not observed in the MS/MS spectra of $[M+H]^+$ ions of compound 2. The compounds 3 and 5 are structurally similar also. But they follow some different fragmentation pathways. Because it contains more polyamide structure, compound 5 has many more cleavage positions such as fragment ions X₁ and X₂. The MS and MS^{*n*} spectra of compound 5 is shown in Fig. 2. Fragment ions X₁, Y₅, X₁/Y₅, X₃ is due to CO–NH bond cleavage.

4. Conclusion

In this study, the ESI-MS spectra of polyamide/peptide conjugates provide abundant structural information. The main fragmentation pathways involve the cleavage of the C–CO between rings and carbonyl groups (*a* cleavage), CO–NH amide bonds (*b* cleavage). The ESI-MS approach has proven to be an excellent method for the structural elucidation of this class of polyamide/peptide conjugates known to specifically cleave DNA.

Acknowledgement

We thank the National Natural Science Foundation of China (No. 20572061).

References

- [1] W.S. Wade, M.M. Mrksich, P.B. Dervan, J. Am. Chem. Soc. 114 (1992) 8783.
- [2] J.W. Trauger, E.E. Baird, P.B. Dervan, Nature 382 (1996) 559.
- [3] S. White, E.E. Baird, P.B. Dervan, Chem. Biol. 4 (1997) 569.
- [4] A. Blasko, K.A. Browne, T.C. Bruice, J. Am. Chem. Soc. 116 (1994) 3726.
- [5] J.G. Pelton, D.E. Wemmer, Biochemistry 27 (1988) 8808.
- [6] C.L. Kielkopf, S.E. White, J.W. Szewczyk, et al., Science 282 (1998) 111.
- [7] Q. Zhang, T.J. Dwyer, V. Tsui, et al., J. Am. Chem. Soc. 126 (2004) 7958.
- [8] M.R. Burns, C.L. Carlson, S.M. Vanderwerf, et al., J. Med. Chem. 44 (2001) 3632.
- [9] I.S. Blagbrough, E. Moya, Tetrahedron Lett. 36 (1995) 9393.
- [10] M.R. Ashton, E. Moya, I.S. Blagbrough, Tetrahedron Lett. 36 (1995) 9397.
- [11] M.M. Becker, P.B. Dervan, J. Am. Chem. Soc. 101 (1979) 3664.
- [12] P.B. Dervan, M.M. Becker, J. Am. Chem. Soc. 100 (1978) 1968.
- [13] I.S. Blagbrough, E. Moya, S.P. Walford, Tetrahedron Lett. 37 (1996) 551.
- [14] E. Moya, I.S. Blagbrough, Tetrahedron Lett. 36 (1995) 9401.
- [15] Y.S. Li, Y.F. Zhao, et al., Bioorg. Med. Chem. 8 (2000) 2675.
- [16] J. Chen, R. Wan, et al., Lett. Pept. Sci. 7 (2001) 325.
- [17] Y. Li, S. Hatfield, J. Li, M. McMills, Y. Zhao, X. Chen, Bioorg. Med. Chem. 10 (2002) 667.
- [18] R. Wan, N. Wang, G. Zhao, Y. Zhao, Chem. J. Chin. Univ. 21 (2000) 1864.
- [19] X. Li, Y.F. Zhao, Chin. Chem. Lett. 8 (1997) 611.
- [20] Y. Ye, M.Y. Niu, Q. Yin, L.F. Cao, Y.F. Zhao, J. Chem. Res. S 4 (2005) 252.